Laboratory Head
Laboratory Members
Postdoctoral Research Scientists
Research Assistants
Technician
Postgraduate Student
- Ms Winona Onglao
Our laboratory seeks to identify signalling pathways that are dysregulated in cancer that drive cell growth and survival – to discover new biomarkers and therapeutic targets for cancers that lack reliable targeted therapy and to elucidate the mechanisms underlying therapy resistance. Although targeted therapy for many cancers has made huge progress in recent years, triple negative breast cancer in women and the childhood cancer, neuroblastoma, lag many other cancers in this aspect.
Current projects:
Our laboratory uses phosphoproteomics, functional genomics, spatial transcriptomics, high/super resolution confocal microscopy, genetically modified or xenograft mouse models of triple negative breast cancer and patient breast cancer specimens for our studies.
Current projects:
These studies will be carried out using state-of-the-art sequencing strategies for coding and non-coding RNAs, bioinformatics and spatial transcriptomics using mouse embryos and patient samples. These studies are part of a large collaborative team which includes those of Associate Professor Quenten Schwarz and Professor Greg Goodall at the Centre for Cancer Biology.
Aberrant post-translational modifications in endosomal trafficking are potential therapeutic targets to avert therapy resistance in solid cancers: Dysregulation of PTM-regulated endosomal interactions presents an opportunity to block oncogenic signalling from multiple receptors by targeting common trafficking pathways
Onglao W, Khew-Goodall Y, Belle L* and Lonic A*.
Bioessays 2021 Dec 16;e2100192. doi: 10.1002/bies.202100192.
Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling.
Lonic A, Gehling F, Belle L, Li X, Schieber NL, Nguyen EV, Goodall GJ, Parton RG, Daly RJ,
Khew-Goodall Y.
J Cell Biol. 2021 Feb 1;220(2):e201902073.
Guidelines and definitions for research on epithelial-mesenchymal transition.
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RJY, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G; EMT International Association (TEMTIA).
Nat Rev Mol Cell Biol. 2020 Apr 16. doi: 10.1038/s41580-020-0237-9. [Epub ahead of print] Review.
Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration.
Po'uha ST, Le Grand M, Brandl MB, Gifford AJ, Goodall GJ, Khew-Goodall Y, Kavallaris M.
Br J Cancer. 2020 Feb;122(3):434-444. doi: 10.1038/s41416-019-0669-1. Epub 2019 Dec 6.
PTPN14 phosphatase and YAP promote TGFβ signalling in rheumatoid synoviocytes.
Bottini A, Wu DJ, Ai R, Le Roux M, Bartok B, Bombardieri M, Doody KM, Zhang V, Sacchetti C, Zoccheddu M, Lonic A, Li X, Boyle DL, Hammaker D, Meng TC, Liu L, Corr M, Stanford SM, Lewis M, Wang W, Firestein GS, Khew-Goodall Y, Pitzalis C, Bottini N.
Ann Rheum Dis. 2019 May;78(5):600-609. doi: 10.1136/annrheumdis-2018-213799. Epub 2019 Feb 26.
miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking.
Pillman KA, Phillips CA, Roslan S, Toubia J, Dredge BK, Bert AG, Lumb R, Neumann DP, Li X, Conn SJ, Liu D, Bracken CP, Lawrence DM, Stylianou N, Schreiber AW, Tilley WD, Hollier BG, Khew-Goodall Y, Selth LA, Goodall GJ, Gregory PA.
EMBO J. 2018 Jul 2;37(13). pii: e99016. doi: 10.15252/embj.201899016. Epub 2018 Jun 5.
Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer.
Bracken CP, Khew-Goodall Y, Goodall GJ.
Cancer Res. 2015 Jul 1;75(13):2594-9. doi: 10.1158/0008-5472.CAN-15-0287. Epub 2015 Jun 11. Review.
The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking.
Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, Herrmann D, Conway JR, Gehling FK, Bert AG, Crocker LA, Tsykin A, Farshid G, Goodall GJ, Timpson P, Daly RJ, Khew-Goodall Y.
Sci Signal. 2015 Feb 17;8(364):ra18. doi: 10.1126/scisignal.2005547.
Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion.
Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ.
EMBO J. 2014 Sep 17;33(18):2040-56. doi: 10.15252/embj.201488641. Epub 2014 Jul 28.
Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells.
Attema JL, Bert AG, Lim YY, Kolesnikoff N, Lawrence DM, Pillman KA, Smith E, Drew PA, Khew-Goodall Y, Shannon F, Goodall GJ.
PLoS One. 2013 Sep 25;8(9):e75517. doi: 10.1371/journal.pone.0075517. eCollection 2013.
MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways.
Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M, Bert AG, Selth LA, Anderson RL, Goodall GJ, Gregory PA, Khew-Goodall Y.
Oncogene. 2014 Jul 31;33(31):4077-88. doi: 10.1038/onc.2013.370. Epub 2013 Sep 16.
The secretome in cancer progression.
Paltridge JL, Belle L, Khew-Goodall Y.
Biochim Biophys Acta. 2013 Nov;1834(11):2233-41. doi: 10.1016/j.bbapap.2013.03.014. Epub 2013 Mar 28. Series Editor R Simpson. Invited review.
Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.
Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y, Goodall GJ.
J Cell Sci. 2013 May 15;126(Pt 10):2256-66. doi: 10.1242/jcs.122275. Epub 2013 Mar 22.
Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression.
Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ.
Neoplasia. 2013 Feb;15(2):180-91.
An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition.
Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Khew-Goodall Y, Goodall GJ.
Mol Biol Cell. 2011 May 15;22(10):1686-98. doi: 10.1091/mbc.E11-02-0103. Epub 2011 Mar 16.
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y*, Goodall GJ*. *equal senior authors.
Nat Cell Biol. 2008 May;10(5):593-601. doi: 10.1038/ncb1722. Epub 2008 Mar 30.
The protein tyrosine phosphatase Pez regulates TGFbeta, epithelial-mesenchymal transition, and organ development.
Wyatt L, Wadham C, Crocker LA, Lardelli M, Khew-Goodall Y.
J Cell Biol. 2007 Sep 24;178(7):1223-35. doi: 10.1083/jcb.200705035.