Accurate quantification of minimal residual disease during treatment of chronic myeloid leukaemia guides clinical decisions. The conventional minimal residual disease method, RQ-PCR for BCR-ABL1 mRNA, reflects a composite of the number of circulating leukemic cells and the BCR-ABL1 transcripts per cell. BCR-ABL1 genomic DNA only reflects leukemic cell number. We used both methods in parallel to determine the relative contribution of the leukemic cell number to molecular response. BCR-ABL1 DNA PCR and RQ-PCR were monitored up to 24 months in 516 paired samples from 59 newly-diagnosed patients treated with first-line imatinib in the TIDEL-II study. In the first 3 months of treatment BCR-ABL1 mRNA values declined more rapidly than DNA. By 6 months the two measures aligned closely. The expression of BCR-ABL1 mRNA was normalized to cell number to generate an expression ratio. The expression of e13a2 BCR-ABL1 was lower than that of e14a2 transcripts at multiple time points during treatment. BCR-ABL1 DNA was quantifiable in 48% of samples with undetectable BCR-ABL1 mRNA, resulting in minimal residual disease being quantifiable for an additional 5-18 months (median 12 months). These parallel studies show for the first time that the rapid decline in BCR-ABL1 mRNA over the first 3 months of treatment is due to a reduction in both cell number and transcript level per cell, whereas beyond 3 months falling levels of BCR-ABL1 mRNA are predominantly due to depletion of leukaemic cells.